If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36+x^2=225
We move all terms to the left:
36+x^2-(225)=0
We add all the numbers together, and all the variables
x^2-189=0
a = 1; b = 0; c = -189;
Δ = b2-4ac
Δ = 02-4·1·(-189)
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{21}}{2*1}=\frac{0-6\sqrt{21}}{2} =-\frac{6\sqrt{21}}{2} =-3\sqrt{21} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{21}}{2*1}=\frac{0+6\sqrt{21}}{2} =\frac{6\sqrt{21}}{2} =3\sqrt{21} $
| 6x+6x+6x=45 | | 14+5x=3(-x+-3)-11 | | a—8a—4a+11a+-15a=13 | | 8x−20=39 | | (3x-24)+x=180 | | 12k-15=3( | | Y=x+5x=10 | | 16x^2-64=120x | | 2z+-14z-9z+17z=12 | | 5b=225 | | 63=9x-2x | | -5x+10=11 | | 5(2x-8)=3(4x+6) | | (20)(x)=1540 | | 3(3y+1)=3(5y+2) | | 5x3-10=5 | | 2+3*4=x | | 10x+40=12x+18 | | 141+8+7x+12x=180 | | 5(2x–3)=80 | | 2x2+3x+4=0 | | 20x+40=25x+30 | | 9c+c-3c-2c-2c=9 | | 3(x+3)+4x=15-2×+3 | | 10q-20q-15q-6q=5 | | 16x-5x+14-6=48 | | (5x6−2x4+9x3+2x−4)−(7x5−8x4+2x−11)= | | 80=2(20+2x) | | 4a+2a=7 | | 10q-20q-15q-6q=-5 | | 3x2-375=0 | | 20y+16y-11y+4y-15y=4 |